Witt equivalence classes of quartic number fields
نویسندگان
چکیده
منابع مشابه
Witt Equivalence Classes of Quartic
It has recently been established that there are exactly seven Witt equivalence classes of quadratic number fields, and then all quadratic and cubic number fields have been classified with respect to Witt equivalence. In this paper we have classified number fields of degree four. Using this classification, we have proved the Conjecture of Szymiczek about the representability of Witt equivalence ...
متن کاملWitt Equivalence of Fields
Definition 1.1. If S is a multiplicative subset of a ring A (commutative with 1), the quotient hyperring A/mS = (A/mS,+, ·,−, 0, 1) is defined as follows: A/mS is the set of equivalence classes with respect to the equivalence relation ∼ on A defined by a ∼ b iff as = bt for some s, t ∈ S. The operations on A/mS are the obvious ones induced by the corresponding operations on A: Denote by a the e...
متن کاملWitt Equivalence of Function Fields over Global Fields
Witt equivalent fields can be understood to be fields having the same symmetric bilinear form theory. Witt equivalence of finite fields, local fields and global fields is well understood. Witt equivalence of function fields of curves defined over archimedean local fields is also well understood. In the present paper, Witt equivalence of general function fields over global fields is studied. It ...
متن کاملWitt rings of quadratically presentable fields
This paper introduces an approach to the axiomatic theory of quadratic forms based on {tmem{presentable}} partially ordered sets, that is partially ordered sets subject to additional conditions which amount to a strong form of local presentability. It turns out that the classical notion of the Witt ring of symmetric bilinear forms over a field makes sense in the context of {tmem{quadratically p...
متن کاملComputation of an Integral Basis of Quartic Number Fields
In this paper, based on techniques of Newton polygons, a result which allows the computation of a p integral basis of every quartic number field is given. For each prime integer p, this result allows to compute a p-integral basis of a quartic number field K defined by an irreducible polynomial P (X) = X4 + aX + b ∈ Z[X] in methodical and complete generality.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 1992
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-1992-1094952-0